MTH 234 - Quiz 2

Due 29 May at the beginning of class
Name:

You may work together on solving these problems, but what you hand in must be your work written in your own words.

1. (5 points) If \vec{r} is a twice-differentiable vector-valued function, show that

$$
\frac{d}{d t}\left[\vec{r}(t) \times \vec{r}^{\prime}(t)\right]=\vec{r}(t) \times \vec{r}^{\prime \prime}(t)
$$

2. (5 points) If $\vec{r}(t) \neq 0$, show that

$$
\frac{d}{d t}|\vec{r}(t)|=\frac{1}{|\vec{r}(t)|} \vec{r}(t) \cdot \vec{r}^{\prime}(t)
$$

Hint: One way is to write $|\vec{r}(t)|^{2}=\vec{r}(t) \cdot \vec{r}(t)$ and differentiate both sides with the chain rule.
3. (5 points) Consider the function $\vec{r}(t)=\langle t, \ln t, t\rangle, t>0$.
(a) Compute the curvature κ of \vec{r}.
(b) What is $\lim _{t \rightarrow \infty} \kappa(t)$? Describe this geometrically.
4. (5 points) A particle moves along the helix $x(t)=3 \cos t, y(t)=3 \sin t, z(t)=t$, starting at time 0 (at the point $(3,0,0))$. How long does it take for the particle to travel 1 unit?

